
Programming the DMCC in C

Task

This tutorial will teach you how to write your first program on a dual motor control cape (DMCC)

through the BeagleBone microcontroller. The DMCC is a stackable board that can control up to two

motors. This tutorial has 6 steps that should take no longer than 15 minutes to complete. After

completing these steps you should be able to program your DMCC and use it in your various projects.

Motivation

This project will teach you to control your open source board, manipulate your machinery in the ways

required by your project. The DMCC can control motors of up to 7 amps, so there is a lot you can do

with it once you have this knowledge.

Audience

This tutorial is for BeagleBone users who would like to use the DMCC board for their projects. Audience

members should be familiar with C, navigating a linux terminal, and accessing SSH. They should also be

experienced enough to perform basic tasks like calling methods found in the DMCC library.

Requirements

You will access to a BeagleBone through either SSH Secure Shell or through direct USB connection. You

will also need internet on your BeagleBone. You will also need to download the DMCC library from

github. If you do not have a active internet connection you will need to get the library code from github

into the BeagleBone from https://github.com/Exadler/DMCC_Library.

Caution

You may see warnings if you do not have an active internet connection when trying to download the

library code from github. If this happens reestablish your internet connection and try to download the

library again. You also may receive errors if you are trying to talk to a DMCC that is not connected to the

BeagleBone. If this happens, reconnect or try a different board number.

https://github.com/Exadler/DMCC_Library

Step 1: Download the DMCC Library Code

In this step, you will retrieve the DMCC Library code from github to begin programming on the

BeagleBone microcontroller for the DMCC (Dual Motor Control Cape). There are two options to retrieve

the code. Choose which one that you prefer, and if one method fails try the other.

STEP REQUIREMENTS: You will need an active internet connection or a way to get the DMCC Library

code from github for this step

1) Get the code from github

 Case 1: Type the command
 git clone git://github.com/Exadler/DMCC_Library

Figure 1: Downloading the Library Code from github

2) Navigate to the directory
cd DMCC_Library OR cd DMCC_Library-master

Figure 3: Navigating to the DMCC Directory

After successfully downloading the base library code to program the DMCC (Dual Motor Control Cape)

and navigating to the directory which holds the code, you will be able to proceed to Step 2 (Creating

Your First DMCC Program) implementing the DMCC library.

Step 2: Creating Your First DMCC Program

In this step, we will go through creating a file for your first DMCC Program. This step will be a basic

building block for all of your future DMCC Programs.

1) Create a new file or edit a current file with your preferred editor (replace FILE_NAME)

vim FILE_NAME.c OR nano FILE_NAME.c

2) Include the following directories by adding the following to the beginning of the file
#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include "DMCC.h"

3) Start writing code in the file by creating a main function after the included directories
int main(int argc, char *argv[]){return 0;}

4) In the main function, start the session, add your code, then end the session
int session = DMCCstart(boardNum);

YOUR_CODE_HERE

DMCCend(session);

a. Specify which board number you want to talk to in

 You will get errors if you are talking to a board that is disconnected
Error: No version number found

Error in write address 0x02

 Refer to www.exadler.com/dmcc to find the board number you should use for some

particular BeagleBone board

Figure 4: Sample Code Using the DMCC Library

After creating your code, you will then need to compile it to ensure that your program is correctly

written (has no syntax or compilation errors). You will also need to create an output file so that you can

run your program. How to do this will be explained in Step 3 (Compiling Your Code Using a Makefile).

http://www.exadler.com/

Step 3: Compiling Your Program Using a Makefile

In the step, you will be updating the Makefile so that you can compile your program. This is a standard

way to compile your code in Linux, but this step will allow you to compile all your programs with a

simple command.

1) In the all option, add an option name that you want to compile your file with
all: …, …, OPTION_NAME

2) Create an option and add YOUR_FILENAME.c, DMCC.c, DMCC.h to check when to compile
OPTION_NAME: YOUR_FILENAME.c DMCC.c DMCC.h

3) Add the gcc command on the next line by (replace OPTION_NAME with chosen name)
$(CC) –o OPTION_NAME YOUR_FILENAME.c DMCC.c

Figure 5: Updating the included Makefile

Now that you have compiled your program, you need to run your file and call the command to compile

your file from the command line. Step 4 describes how you can go about running your program.

Step 4: Running Your DMCC Program

Once you have your file, you have to run it from the shell on the BeagleBone. This step will tell you a

step-by-step instruction set on how to run your file.

1) Compile your program – either case will work to compile your program. It is recommended that

you use Case 2 however, to ensure that no file that you use has errors.

 Case 1: Compile only your newly created file or program
make OPTION_NAME

Figure 6: Compiling Your Program

OR

 Case 2: Compile all files in the directory
make

Figure 7: Compiling All Programs in the Directory

2) Run your file
./OPTION_NAME

Figure 8: Running Your Program

After running your file, as an additional option, you can pass in arguments from the command line. This

allows the user to change input values to their program in real time. In Optional Step 5, we explain how

to do this.

Optional Step 5: Getting Command Line Arguments into Your Program

As an option, you can get arguments from the command line so that you can quickly make calls to your

program with different variables without editing and re-compiling your program.

a. Open your file again using your preferred editor

vim FILE_NAME.c OR emacs FILE_NAME.c OR nano FILE_NAME.c
b. argv[] contains all the arguments from the command line. So, get the arguments by

getting the value of the array at a certain index.

i. To get an integer argument use the atol(argv[#])

 E.g. to get one argument from the user

Figure 9: Adding Code to Get Arguments From the Command Line

c. Re-compile your code with the new arguments

make OR make OPTION_NAME

d. In the command line, to run the function

Figure 10: Running Your Function with Arguments

